Lindelöf property and the iterated continuous function spaces
نویسندگان
چکیده
منابع مشابه
Lindelöf property and the iterated continuous function spaces
We give an example of a compact space X whose iterated continuous function spaces Cp(X), CpCp(X), . . . are Lindelöf, but X is not a Corson compactum. This solves a problem of Gul’ko (Problem 1052 in [11]). We also provide a theorem concerning the Lindelöf property in the function spaces Cp(X) on compact scattered spaces with the ω1th derived set empty, improving some earlier results of Pol [12...
متن کاملcompactifications and function spaces on weighted semigruops
chapter one is devoted to a moderate discussion on preliminaries, according to our requirements. chapter two which is based on our work in (24) is devoted introducting weighted semigroups (s, w), and studying some famous function spaces on them, especially the relations between go (s, w) and other function speces are invesigated. in fact this chapter is a complement to (32). one of the main fea...
15 صفحه اولChaotic property for non-autonomous iterated function system
In this paper, the new concept of non-autonomous iterated function system is introduced and also shown that non-autonomous iterated function system IFS(f_(1,∞)^0,f_(1,∞)^1) is topologically transitive for the metric space of X whenever the system has average shadowing property and its minimal points on X are dense. Moreover, such a system is topologically transitive, whenever, there is a point ...
متن کاملOn Productively Lindelöf Spaces
We study conditions on a topological space that guarantee that its product with every Lindelöf space is Lindelöf. The main tool is a condition discovered by K. Alster and we call spaces satisfying his condition Alster spaces. We also study some variations on scattered spaces that are relevant for this question.
متن کاملProductively Lindelöf spaces may all be D
We give easy proofs that a) the Continuum Hypothesis implies that if the product of X with every Lindelöf space is Lindelöf, then X is a D-space, and b) Borel’s Conjecture implies every Rothberger space is Hurewicz.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fundamenta Mathematicae
سال: 1993
ISSN: 0016-2736,1730-6329
DOI: 10.4064/fm-143-1-87-95